Exam ACCA

Machine Learning

Analytics & Modeling
By Peaks2Tails
5 (9744)

~100 hrs | English

Description

SlnTopicDetails
Module 1 - Primer
01Introduction to Machine LearningWhat is Machine Learning
Types of Learning (Supervised, Unsupervised, Reinforced)
Structured vs Unstructured Data
Applications of Machine Learning in Real Life
02Math toolbox for ML Linear Algebra
Vector Algebra (Addition, Product, Projections)
Matrix Algebra (Transpose, Multiplication, Inverse, Eigen Values)
Optimization
Maxima and Minima (calculus based)
Lagrangian Multipliers
Gradient Descent
Parameter Estimation
Maximum Likelihood Method (MLE)
Maximum a Posteriori (MAP)
03Getting Started with PythonPython basic data types - CRUD
Numpy
Python Plotting
Pandas
Probability & Stats in python
Regression in Python. Time Series in Python
Monte Carlo Simulations in Python
Module 2 – Predictive Analytics
04Linear RegressionWays to estimate coefficients in Regression Model
Simple vs Multiple Linear Regression
Regression Assumptions (Multicollinearity, OVB, Serial Correlation, Hateroscedasticity)
Stepwise regression
05Types of Regression Principal Component Regression
MCMC
Kalman Regression 
06Time Series Model Checking Stationarity of Data
Deterministic, Stochastic Trend & Seasonality
Autocorrelation & Partial Autocorrelation Functions
Fitting ARIMA models
LSTM - Long Short Term Memory
Module 3 – Supervised Learning (Classification)
07Decision Boundary AlgorithmsLinear Discriminant Analysis
Linear SVM
Non Linear SVM
Kernel SVM
08Logistic RegressionLogistic Regression
09Decision TreesClassification Trees
Regression Trees
Stooping & Pruning Criterias
10KNNDistance Measures
K- Nearest Neighbour
 
11Neural NetworksGradient Descent
Forward Propoagation
Backward Propagation
 
12Classification Model Selection and PerformanceROC & CAP Curve
Confusion Matrices
 
Module 4 – Supervised Learning (Regression)
13Bias vs Variance Trade Off K Fold Cross Validation
14Regularisation techniquesLasso
Ridge
Elastic Net
Module 5 – Unsupervised Learning
15Dimensionality ReductionPrincipal Component Analysis (PCA)
16ClusteringHierarchical Clustering
K-Means Clustering
Partitive Clustering 
Module 6 – Reinforcement Learning
17Markov Decision ProcesState, Action, Rewards  Matrix
18Model based Learning vs Model Free LearningAnalytical Solution
Iterative Procedure
Random Exploration & Exploitation Utility Based Method
 
19On Policy Evaluation vs Off Policy EvaluationUtility Based Method SARSA 
Module 7 – Natural Language Processing (NLP)
20Data PreparationCleaning
Regex
21Data WranglingTokenisation
Normalisation
Bag of Words
n- Grams
Lowercasing
Stop words
Stemming
Document Term Matrix
22Exploratory Data analysisTerm Frequency (Word Cloud)
Document Frequency
 
23Feature selectionChi Sq Test
Mutual Information
 
24Feature Engineeringn-Grams
POS
Name entity recognition
 
25Model Training & Validation 

Other Info

  • Duration : ~100 hrs
  • Language : English
  • ₹ 40000

Validity
Views
Video Delivery
Books
Peaks2Tails
Author
Peaks2Tails