Sln | Topic | Details |
Module 1 - Risk Foundation |
01 | Coding in Python | Data types, CRUD operations If Else Statements & Loops Numpy, Pandas, Matplotlib Regression & Time Series in Python Monte Carlo Simulations in Python
|
02 | y = f(x) thinking (Excel + Python)
| Taylor Series Sensitivity based approaches Option Greeks
|
03 | Risk Metrics (Excel + Python)
| Formulating VaR & ES (Parametric, Historical, Monte Carlo) Calculation of VaR & ES for simple instruments (EQ, IR, Fx, Commodity)
|
Module 2 – Risk Aggregation |
04 | Portfolio Mapping (Excel + Python)
| Systematic VaR Specific VaR Factor Models & PCA
|
05 | Risk Mapping & Aggregation (Excel + Python)
| Bond Portfolio Stock Portfolio Option Portfolio
|
Module 3 – FRTB Model |
06 | Standardised Approach (Excel + Python)
| Delta, Vega, Curvature Charge Residual Risk add-on Default Risk Charge
|
07 | Advanced Approach (Excel + Python)
| Expected Shortfall Calibrations with stressed periods NMRF Stress Capital Default Risk Charge
|
08 | PnL Attribution & Backtesting (Excel + Python)
| PL Attribution Tests Backtesting
|
09 | Model Validation (Excel + Python)
| Common checks in model validation Review of SR 11-7 Case studies from past
| |
Module 4 – Counterparty Credit Risk |
10 | Exposure Modelling (Excel + Python)
| EE, EPE, EEPE in Python Forwards (EQ, IR, Fx) Swaps (IRS, CCS) Options (EQ, Caplets)
|
11 | EAD Modelling (Excel + Python)
| Standardised Approach - CCR Internal Models Method
|
12 | CVA Capital Charge (Excel + Python)
| Standardised Approach Advanced Approach
|
13 | XVA toolbox (Excel + Python)
| End to end project in python calculating BCVA, FVA, ColVA, MVA, KVA
|